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I. Phys. A Math. Gen. 26 (1993) 3791-3796. Printed in the UK 

Symmetries of Toda equationS 

Pantelis A Damianou 
Department of Mathematics and Statistics. The University of Cyprus, Po Box 537, Nicosia, 
CYPNS 

Abstract. We find a sequence consisting of time-dependent evolution vector fields whose time- 
independent part corresponds to the master symmetries for the Tada equations. Each master 
symmetry decomposes as a sum consisting of a group symmetry and a Hamiltonian vector held. 
Taldng Lie derivatives in the direction of these vector fields produces an infinite sequence of 
symmetries. 

1. Introduction 

A symmetry group of a system of differential equations is a Lie group acting on the space 
of independent and dependent variables in such a way that solutions are mapped into other 
solutions. Knowing the symmetry group allows one to deterpine some special types of 
solutions invariant under a subgroup of the full synimetry group, and, in some cases, to 
completely solve the equations. The symmetry approach to solving differential equations 
can be found, for example, in the books of Olver (1986), Bluman and Cole (1974), Bluman 
and Kumei (1989) and Ovsiannikov (1982). One method of finding symmetry groups is 
the use of recursion operators, an idea introduced by Olver (1977). The existence of a 
recursion operator provides a mechanism for generating infinite hierarchies of symmetries. 
Most of the well-known integrable equations, including the KdV, have a recursion operator. 
Even some non-conservative systems have recursion operators. The Toda lattice (finite, 
non-periodic and in Flaschka’s variables) is one example where a recursion operator is 
impossible to find. The kernels  of the two Poisson. structures are different and, therefore, 
it is impossible to find an operator that maps one to the other. The absence of a recursion 
operator for the finite Toda lattice is also mentioned in Morosi and Tondo (1990) where a 
Ninjenhuis tensor for the infinite Toda lattice is calculated. In Damianou (1990) we used 
master symmetries to generate nonlinear Poisson brackets for the Toda lattice. In essence, it 
is an example of a system that is not only bi-Hamiltonian but which can actually be given N 
different Hamiltonian formulations with N as large as desired. In most cases, if a system is 
bi-Hamiltonian, one can find a recursion operator by inverting one of the Poisson operators. 
However, in the case of Toda lattice both operators are non-invertible and, therefore, this 
method fails. Master symmetries were first introduced by Fokas and Fuchssteiner (1981) 
in connection with the Benjamhano equation. Then in Oevel and Fuchssteiner (1982), a 
master symmetry was found for the Kadomtsev-Petviashvili equation. Master symmetries 
for equations in 1 + 1, like the KdV, are discussed in Chen et al (1983) and in Fokas 
(1987). A general theory for master symmetries is discussed in Fuchssteiner (1983). The 
connection between master symmetries and the usual recursion operators for equations in 
2 + ~ 1  is discussed in Fokas and Santini (1988). Some properties of master symmetries (at 
least in the Toda case) are clear: they preserve constants of motion, Hamiltonian vector 
fields, and they generate a hierarchy of Poisson brackets. We are interested in the following 
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problem: can one find a symmetry group of the system whose infinitesimal generator is 
a given master symmetry? In other words, is a master symmetry a group symmetry? In 
the case of Todd equations the answer is negative. However, in this paper we find a 
sequence consisting of time-dependent evolution vector fields whose timeindependent part 
corresponds to the master symmetries in Damianou (1990). Each master symmetry X ,  can 
be written in the form Y, -t r2, where Y,, is a time-dependent symmetry and 2, is a time- 
independent Hamiltonian symmetry (i.e. a Hamiltonian vector field). Taking Lie derivatives 
in the direction of X ,  (or Y.) gives an infinite sequence of symmetries for the Toda lattice. 

In this section, we present some background on the Toda lattice. See Flaschka (1974), 
Kostant (1979) and Toda (1981) for more details. We also include some of the results in 
Damianou (1990) for completeness. ~. 

The Toda lattice is a Hamiltonian system with Hamiltonian 

This system is completely integrable. One can find a set of functions [HI, . . . , H N }  which 
a e  constants of motion for Hamilton's equations. To determine the constants of motion, 
we use Haschka's transformation 

(2) 1 (4,-41+1)/2 b. - -1 . ai = Ze L - =PL. 

Then 

ut = ni(bi+l - bi) hi = 2(a3 -a;-,). (3) 

These equations can be written as a Lax pair i = [ B ,  L], where L is the Jacobi matrix 

'bl al 0 _ _ _  _ _ _  0 

L =  

and 

B =  

0 a , O  . . . . . .  0 
-a1 0 a2 ... 

0 -a2 0 ". 
. ~. 

'. UN-1 

-aN-i 0 0 ... . . . ~  

(4) 
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It follows easily that the eigenvalues of L do not evolve with time. 
In Damianou (1990) we constructed a sequence of vector fields X., for n > -1, and 

an infinite sequence of contravariant 2-tensors w,, for n > 1, satisfying the following 
conditions. 

(i) w n  are all Poisson. 
(ii) The functions H, = (l/n)TrL" are in involution withjespect to all of the w,. 
(iii) X,,(H,) = (n  + m)H,+,. 
(iv) Lx,w, = (n - m + 2)w,+,, modulo an equivalence relation defined in Damianou 

(1990). 
(v) EX,, xfl = (1 - I ) X ~ + ~ ,  where xr is the Hamiltonian vector field generated by Hf 

with respect to wl . 
(vi) M,, grad Hf = M"-I grad HI+I, where M,, is the Poisson matrix of w,. If we denote 

the Hamiltonian vector field of HI with respect to the nth bracket by x;, then these relations 
are equivalent to x; = x:;. 

We give an outline of the construction of the vector fields~x,. Define X-1 to be 

N .  a 
grad& = g r a d T r L = z -  abj 

; = I  

and X ,  to be the Euler vector field 

We want X1 to satisfy 

X I  (Tr L") = n Tr L"" . 

One possibility is 

where 

r,, = -na,b, + (n + Z)a,,b,+I 

s,, = (2n + 3)a: + (1 - Zn)a;-, + bi. 

In a similar way one can construct a vector field X:! which satisfies 

XZ(HJ = (n+2)Hn+z. (11) 

This allows one to define X3 = [XI, XZ] and, inductively, a sequence X I ,  Xz, . . . which 
satisfies 

[ X , ,  X,l = (m - n)Xn+,.  (12) 
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3. 

In this section we find an infinite sequence of evolution vector fields that ace symmetries 
of equations (3). We do not know if every symmetry of Toda equations is included in this 
sequence. 

We begin by writing equations (3) in the form 

(13) r. - - &. - 0.b .  J+l + ajbj = 0 Aj = b j  -a,? + hj-] 2 = 0. 

A symmetry of Toda equations is a vector field of the form 

that generates the symmetry group of the Toda system. The first prolongation of v is 

where 

(16) 
. .  

f j  = d j  - raj 

pr(])(rj) = o pr(')(Aj) = 0. (17) 

gj  = l j l j  - +bj. 

The infinitesimal condition for a group to be a symmetry of the system is 

Therefore we obtain the equations 

dj - iaj(bj+i - bj) + @j(bj - bj+i) + aj@j - aj$j+i = 0 
2 2  (18) 

ljlj -2+(aj  - a j w l )  -4aj+j +4aj-l@jmI =o. 
Here are some obvious solutions: 

(i) T = 0, @ j  = 0, $j = 1. This is the vector field X-]. 
(ii) r = -1, @ j  = 0, $j  = 0. The resulting vector field is the time translation - a l a r  

whose evolutionary representative is 

N-I 

j = l  ab, 

This is the Hamiltonian vector field xH2. It generates a Hamiltonian symmetry group, 
(iii) 5 = - t ,  @j = aj, $j = bj. Then 

a N a  a 
a t  j=i a a j  j = l  ab, a t  
a N-1 

21 = -t-  + c a j -  + bj- = - t -  + X,. 

This vector field generates the same symmetry as the evolutionary vector field 

xo + txnz. (21) 
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We next look for some non-obvious solutions. The vector field X I  is not a symmetry, 
so we add a term which depends on time. We try 
@j=-ja lb j+( j+2)ajb j+~+t(a ja j+,+ajb~+,-a .  2 2 ..-nib;) 

1-1 I 
(22) 

$1 = ( 2 j + 3 ) a f + ( l  - 2 j ) ~ j ~ ~  f b : + r ( 2 ~ f b ~ + ~  +2a,?-2aj-,aj - 2 ~ f ~ ~ b j )  

with t = 0. A tedious but straightforward calculation shows that @j, $j satisfy (18). It 
is also siraightforward to check that the vector field C~$~ja/aa~ + qji-a/abj is precisely 
equal to X 1  + t x ~ ~ .  The pattern suggests that X ,  +TXH.+> is a symmetry of Toda equations. 
In the course of the proof, we use some properties of the first three Poisson brackets wl ,  
w2, wg of the Toda lattice. These three brackets have been known for some time (Adler 
1979, Damianou 1989, Kostant 1979, Kupershmidt 1985). 

Theorem. The vector fields X ,  + tXn+2 are symmetries of Toda equations for n 2 -1. 

ProoJ 
first prove the formula 

Write X I  = [ W I ,  f i ]  where [ , ]  denotes the Schouten bracket. Use the super Jacobi identity 
for the Schouten bracket: 

Note that xx, = 0 because I f 1  is a Casimir for the Lie-Poisson w1 bracket. We 

[ X l , X I l  = (I - 1)Xt+I. (23) 

(24) 

. (2.3 

R W l ,  HI], X I 1  + [[HI. X I ] ,  W l l +  [ [ X I ,  W l l ,  HI1 = 0. 

[ X I ,  XI1 = ( l +  I ) [ f i + l ,  W l l  - 2w2, H I 1  

= ( l +  1)XI+l - 2Xf.  

Therefore, 

1 But x: = xI+l = x ~ + ~ .  This is a Lenard-type relation which is easily checked. See 
Damianou (1989) for details. Therefore, we have 

[ X I ,  XI1 = (1 - 1)Xl+I. 

[XZ, XI1 = (1 - 1)Xl+Z. 

To prove it, one uses the relation x: = xkl = XI+Z. 

[X., XI1 = (1 - 1)XtI+l. 

(26) 
In the same fashion one can prove that 

(27) 

More generally, we have 

The proof, for n 3 3, uses induction on n.. 
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In particular, for I = 2, we have [X,, x21 = xn+2. 

are symmetries of Toda equations we must verify the equation 
Since the Toda flow is Hamiltonian, generated by XI, to show that Y, = X ,  + f x n + ~  

ay, - + [xz, Y"] = 0. at 

But 

= X"t2 - [ X " ,  xzl 
= x n t z  - X"t2 = 0. 
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